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Several papers [1-4] have proposed approximate diffusion models which 
can be used to examine the trausport process in a rarefied gas where the 
mean  free path is large and transport is not determined by the local 
gradient of  the particular quantity. 

In this paper the integral diffusion model [2] is used to solve the prob- 
lem of determination of the friction stress and velocity of a flow of an 
incompressible gas around a plane semi-infini te  plate in the whole range 
of Knudsen numbers. The obtained solution is compared with published 
solutions and experimental  data [9]. 

w The flow of a rarefied gas at constant density, 
velocity of sound, and mean free molecular  path in the 
boundary layer at a plane semi-infinite plate is de- 
scribed by the system of equations [2] 
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and initial condition x = 0; u = Uo. 
Here ~ is the coefficient of diffuse reflection. 
On introducing the dimensionless variables 
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the system of equations takes the form 
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with boundary conditions 
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(i . i)  

y' = oo, U' : i ,  

and initial condition 

x' = 0 ,  u ' =  t .  

The friction s t ress  at the wall is given by the 
expression 
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Here T is the ratio of specific heats, R is the Rey- 
nolds number, and in this case 
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n-~=0"383' ~ - E = t " 6 t  f o r T = y  

2 ' =  0 .456,  R'A ~-~ ~zz = 1 .48  for ~ = ~  . 

Elimination of ~o, f rom the system of equations leads 
to an equation for the velocity u' of the gas 
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with boundary conditions 
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and initial condition 

x ' . = O ,  u '  = I. 

w 2, The equation for u' was solved by the method of finite differ- 
ences in the variables z and ~ = In(y' + A). When the variable ~ is 

introduced the equation takes the form 
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with boundary conditions 

Ou' - Ou' b'2u/ 
~ 0 = l n A ,  u" -+- u" ~x, = Ae-~ [ ' ~  + u' ~ ]  , 

~ = ~ ;  z ' = O ,  u ' = t .  

The right-hand side consists of terms, the differences for which were 
written with the (n + 1)-th layer included (n is the number of the point 
along x') .  It must  be taken into account that one of the characteristics 
of system (1.1) in the initial cross section is horizontal. The scheme of 
[10] is used to write the difference equation. 

The friction stress is determined by the screw die method from the 
equation 
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T a b l e  
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0.1 
0.2 
0.3 
0.4 
0.6 
0.8 
t . 0  
2.0 
3 
4 
6 
8 

t0 
20 
30 

1.0 
0.996 
0.983 
0.959 
0.928 
0.836 
0.719 
0.590 
0 .2t6  
0.:[28 
O. 0904 
O.0576 
0.0424 
0. O337 
0.0t66 
O.Ott t  

0.5 
0.499 
0.496 
0.490 
0.48i  
0.457 
0.424 
0.383 
0.202 
0.'125 
O. 0898 
0.0575 
0.0424 
0.0337 
0.0i66 
0 .01 t l  

o.~75 
0 .3 i6  
0.194 
0.i38 
0.0872 
0.0640 
0.0507 
0.0249 
0.0i66 

0.489 
0.295 
0.190 
0,137 
0.0S70 
0.0640 
0,0507 
0.0249 
0.0166 

I:: ~ ~ ~Lz-1-1 1.01 T 

 II 1 
0.! /0 

4 
f00 

8 

4 

z/ 
o# 

/ 
l 

/ 

/ 
a~ 

bJ 
/ 

// 

Fig, I Fig, 2 



62 ZHURNAL PRIKLADNOI MEKI-IANIKI I TEKHNICHESKOI FIZIKI 

# ! 

Fig .  3 

u I 'LLLLIIII I 
I- I- H-FI':i~--11 

~M 

0.I 

o.o11 

I IIII11 
I I11111 

I0 10 

Fig. 4 Fig. 5 



JOURNAL OF A P P L I E D  MECHANICS AND TECHNICAL PHYSICS 63 

020/ / Og '2 = T' --  u' 

with boundary conditions 

y ' = 0 ,  q~'-=A<-f; y '=oo ,  ~ ' = t .  

w 3. We consider the results of the calculations. The intervals were 
Ag = 0.05 and 0.07; Az = 0.02 and 0.01. A comparison of the errors with 
different pitches showed that the error at x' = 1 was ~0.3~ 

The table gives the remits for u'(0, z) and ~0'(0, z) in reIation to z 
f o r c = l  ando=0 .8 .  

The remits of different calculations were compared with the exper- 
imental data of [9] in [6]. This comparison is reproduced in Fig. 1, 
where the results of the present work are also given. The value of 

CDM =~7" C f M d ~ ' =  
o 

x" 

= 4  2 - ~ u (p'(0, ~')dx' 
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for free molecular flow ( x '  = 0)  is 

C D ,M=2z  ] /2 /nT,  

q~(0, 0) = (}.5, CD, M =  1.35 for g =  t.0. 
q~ (0, 0) = 0.6, CDM ~ t.08 for (l = 0.8. 

In Fig. 1, curve 1 is the Blasins solution for an incompressible bound- 
ary layer; curve 2 is given by the theory of free-molecular flow; curve 3 
is given by slip flow theory in Rayleigh's approximation [5]; curve 4 
gives the results of calculations by the approximate method of [6]; 
curve 5 gives the results of calculations by the integral diffusion method; 
curve 6 is the relationship after introduction of a connection [7] for the 
finite length of the plate when M = 0.60 and; curve 7 is the same for 
M = 0.18. The experimental data of [9] are denoted by triangles for 
0.16 < M < 0.21, and by squares for 0.46 < M < 0,;2. 

Figures 2 and 3 show the obtained velocity distribution in the cross 
section of the boundary layer at different distances from the front edge 
of the plate, while Fig. 4 shows the velocity distribution along the 
plate. In Fig. 4 curve 1 was obtained by calculation by the integral 
diffusion method for o = 1; curve 2 is the same for o = 0.8; curve 3 is 
given by the integral diffusion method in Rayleigh's approximation [2] 
and, curve 4 is given by slip flow theory in Rayleigh's approximation. 

Figure 5 shows the distribution of CfM along the plate for o = 1.0 
and 0.8. 

The obtained results agree with those of [8], where it was found 
that at 0.001 < M/R t/2 < 0.1 the friction stress agreed exactly with the 
Blasius solution to terms of the third order of smallness. 
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